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ERROR BOUNDS FOR THE NUMERICAL EVALUATION OF LEGENDRE
POLYNOMIALS BY A THREE-TERM RECURRENCE∗

TOMASZ HRYCAK† AND SEBASTIAN SCHMUTZHARD†

Abstract. We study the numerical evaluation of the Legendre polynomials Pn on the interval [−1, 1] via a
three-term recurrence. We prove that in a neighborhood of an endpoint, the computed approximation exactly agrees
with the line tangent to Pn at this endpoint. As a consequence, we obtain sharp error bounds for the recurrence.
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1. Introduction.

1.1. Main results. A new method of analysis of three-term recurrences in floating-point
arithmetic was introduced in [4]. That paper is devoted to the numerical evaluation of the
Chebyshev polynomials Tn by a three-term recurrence. Approximate values of Chebyshev
polynomials Tn computed in floating-point arithmetic are denoted by T̂n. It is shown in [4,
Theorem 1] that in a neighborhood of an endpoint of the interval [−1, 1], T̂n agrees with the
line tangent to Tn at that endpoint. New error estimates are derived from this observation.

Our objective in this paper is to extend this approach to the case of Legendre polynomials.
For z ∈ R, the Legendre polynomials Pn are defined by the three-term recurrence

Pn(z) =
2n− 1

n
z Pn−1(z)−

n− 1

n
Pn−2(z), n = 2, 3, . . . ,(1.1)

with P0(z) = 1 and P1(z) = z. Approximate values of the Legendre polynomials computed
by the recurrence in floating-point arithmetic are denoted by P̂n; see Section 2 for a definition.
Throughout this paper, we use a floating-point numbers system F with the unit roundoff u.

Our main tool is described in Theorem 3.1. We show there that if x ∈ F and

|x− 1| <
√
u√

n(n+ 1)
,

then

P̂n(x) = Pn(1) + P ′n(1)(x− 1) = 1 +
1

2
n(n+ 1)(x− 1).

Equivalently, the floating-point approximation P̂n(x) coincides with the line tangent to Pn
at x0 = 1. As a consequence, we derive new upper and lower error bounds for P̂n valid
in a neighborhood of the endpoints. Specifically, we prove in Theorem 5.1 that if n > 1,
n(n+ 1) < 1

u , and

1−
√
u√

n(n+ 1)
< x 6 1,
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then

17

36
P ′′n (1) · (1− x)2 6 Pn(x)− P̂n(x) 6

1

2
P ′′n (1) · (1− x)2.(1.2)

As a consequence, we show in Theorem 5.2 that if n > 2 and n(n+ 1) < 1
u , then there exists

x ∈ F such that

Pn(x)− P̂n(x) >
un2

68
·(1.3)

This result is optimal up to a constant factor since a corresponding upper bound of the form
O(un2) is given in [6, Theorem 4.1].

Combining the lower bound from Theorem 5.2 and an upper bound from [6, Theorem 4.1],
we infer that the absolute error

∣∣∣P̂n − Pn∣∣∣ is maximized close to the endpoints of the interval

[−1, 1]. Specifically, the maximum absolute error is located within a distance of O( 1
n2 ) from

the endpoints; see Theorem 5.3.

1.2. Previous work. We outline recent advances in the numerical evaluation of Legendre
polynomials on the interval [−1, 1]. The three-term recurrence is the method of choice when
all Legendre polynomials up to a certain degree are needed. On the other hand, the authors
of [1] consider the evaluation of a single Legendre polynomial. Such an approach is used,
e.g., for constructing Gauss-Legendre quadratures or for the summation of Legendre series
in parallel. The authors describe an evaluation algorithm that combines asymptotic formulas
with approximations using tabulated zeros of Legendre polynomials and which has time
complexity of O(1). A similar method is developed in [2] with the focus on the construction
of Gauss-Jacobi quadratures.

In [7], the authors propose an algorithm for the evaluation of Legendre polynomials in
arbitrary precision using midpoint-radius interval arithmetic. Subsequently, they construct
Gauss-Legendre quadratures by means of the interval Newton method, which provides rigorous
enclosures of the quadrature nodes and weights. The algorithm is designed for precisions
of hundreds to thousands of bits. It combines approximations by hypergeometric series,
asymptotic expansions, and the three-term recurrence (1.1).

An upper error bound for the three-term recurrence (2.3)–(2.4) on the interval [−1, 1] is
derived in [6]. This upper bound lies within a constant from the lower bound given in (1.3).

The inequalities (1.2), (1.3) and Theorem 5.3 have their counterparts in the case of
Chebyshev polynomials [4].

2. Floating-point arithmetic. A straightforward way to implement (1.1) in floating-
point arithmetic is given by

P̃n(x) = ((2⊗ n	 1)� n)⊗
(
x⊗ P̃n−1(x)

)
	(2.1)

((n	 1)� n)⊗ P̃n−2(x), n = 2, 3, . . . ,(2.2)

with P̃0(x) = 1 and P̃1(x) = x, x ∈ F. Circles indicate rounded-to-nearest arithmetic
operations with gradual underflow. In the absence of overflow, the results of circled operations
are in F.

Unfortunately, the so defined P̃n is irregular and difficult to analyze. For example, in
IEEE single precision, we have P̃0(1) = P̃1(1) = P̃2(1) = 1. However,

P̃3(1) = (5� 3)	 (2� 3) =

(
5

3
− 2

3
us

)
	
(
2

3
+

1

3
us

)
= 1− us,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

EVALUATION OF LEGENDRE POLYNOMIALS 325

where us = 2−24 is the unit roundoff in single precision.
Instead of P̃n, we study the following approximation of Pn:

P̂n(x) =
(
2⊗ (x⊗ P̂n−1(x))	 P̂n−2(x)

)
	(2.3) (

x⊗ P̂n−1(x)	 P̂n−2(x)
)
� n, n = 2, 3, . . .(2.4)

with P̂0(x) = 1 and P̂1(x) = x, x ∈ F. Clearly, P̂n(1) = 1 as long as P̂n(1) is defined. One
can consider this approach a perturbation of a three-term recurrence satisfied by Chebyshev
polynomials. It can be shown [4, Lemma 5] that

2⊗ (x⊗ P̂n−1(x)) = (2⊗ x)⊗ P̂n−1(x)

if no floating-point exception occurs. Since we must compute x⊗ P̂n−1(x) in (2.4) anyway,
we reuse this quantity in (2.3) in order to reduce the operation count. Throughout this paper,
we evaluate P̂n and P̃n only at numbers x ∈ F. Experiments presented in Section 6 indicate
that P̃n and P̂n approximate Pn with comparable accuracy.

We assume that floating-point numbers in F have base 2 and t-digit significands [3,
Equation (2.1)]. We refer to the elements of F as representable numbers. The unit roundoff
is given by u = 2−t [3, p. 42]. We assume that 1

2 , 1, 2, 4 ∈ F. Consequently, u 6 1
2 .

Additionally, we assume that u ∈ F. Our assumptions on F are satisfied for IEEE single and
double precision arithmetic.

Finally, we assume that the degrees n of the Legendre polynomials appearing in (2.4) are
representable. In the remainder of this section, we present results that are used in Section 3.

LEMMA 2.1. If x ∈ F and 1
2 6 x 6 2, then x− 1 ∈ F.

Proof. Since u ∈ F, all integer multiples of u in the interval [−1, 1] are representable. If
1
2 6 x 6 1, then x is an integer multiple of u. If 1 6 x 6 2, then x = 1 + 2uk for some
integer k, and again x is an integer multiple of u. Consequently, x− 1 is an integer multiple
of u lying in the interval [−1, 1], and thus x− 1 ∈ F.

LEMMA 2.2. Let r ∈ Z, 2ru, 2r, x ∈ F, and 2r−1 6 x 6 2r. If a, b ∈ Z and
|ax+ 2rub| 6 2r, then ax+ 2rub ∈ F.

Proof. Since 2ru and 2r ∈ F, all integer multiples of 2ru with modulus not exceeding
2r are representable. Since x ∈ F and 2r−1 6 x 6 2r, we have x = 2ruk for some k ∈ Z.
Thus, ax + 2rub = (ak + b)2ru is an integer multiple of 2ru. The claim follows from the
assumption that |ax+ 2rub| 6 2r ∈ F.

LEMMA 2.3. If n > 2 is an integer, x ∈ F, and 1− 1
n 6 x 6 1 + 2

n , then n(x− 1) ∈ F.
Proof. If 1− 1

n 6 x 6 1, then 1
2 6 x 6 1 and |n(x− 1)| 6 1. The claim follows from

Lemma 2.2 applied with r = 0, a = n, and b = −n/u. If 1 6 x 6 1 + 2
n , then 1 6 x 6 2

and |n(x − 1)| 6 2. The claim follows from Lemma 2.2 applied with r = 1, a = n, and
b = −n/(2u).

The following two lemmas are proved in [4, Lemma 3 and Lemma 4].
LEMMA 2.4. If N > 1 is an integer, u is the unit roundoff, x ∈ F, and

|x− 1| <
√
u√
2N

,

then

|x− 1| 6 1

2N + 2
·
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LEMMA 2.5. If N > 1 is an integer, u is the unit roundoff, x ∈ F, and

|x− 1| <
√
u√
2N

,

then 1 +N(x− 1) ∈ F, 1 + (N + 1)(x− 1) ∈ F and

x⊗ (1 +N(x− 1)) = 1 + (N + 1)(x− 1).(2.5)

No floating-point exception occurs in (2.5).

3. Representation of P̂n as a tangent line. In this section, we derive representations of
P̂n(x) as tangent lines to the Legendre polynomial Pn at the endpoints of the interval [−1, 1].

THEOREM 3.1. If n > 2 is an integer, u is the unit roundoff, x ∈ F, and

|x− 1| <
√
u√

n(n+ 1)
,(3.1)

then

P̂n(x) = Pn(1) + P ′n(1)(x− 1) = 1 +
1

2
n(n+ 1)(x− 1).(3.2)

We note that the relations Pn(1) = 1 and P ′n(1) =
1
2 n(n+1) follow from (4.3) and (4.4),

respectively. Since P̂0(x) = 1 and P̂1(x) = x by definition, if n = 0 or n = 1, then (3.2)
holds for every x ∈ F.

Proof. We proceed by induction with respect to n. The claim (3.2) is true for n = 0 and
n = 1. Let us assume that (3.2) holds for n − 2 and n − 1. Our approach is to explicitly
compute the terms appearing in (2.3) and (2.4) and then to verify (3.2). The assumption (3.1)
justifies our use of Lemmas 2.4 and 2.5 whenever 1 6 N 6 1

2n(n+ 1).
From Lemma 2.4 applied with N = 1

2n(n+ 1), we deduce that

|x− 1| 6 1

n2 + n+ 2
·(3.3)

Using the induction hypothesis for P̂n−1(x) and Lemma 2.5 with N = 1
2 (n− 1)n, we obtain

x⊗ P̂n−1(x) = x⊗
(
1 +

1

2
(n− 1)n · (x− 1)

)
= 1 +

[
1

2
(n− 1)n+ 1

]
(x− 1).(3.4)

Combining this with (3.3), we see that∣∣∣x⊗ P̂n−1(x)∣∣∣ 6 1 +

[
1

2
(n− 1)n+ 1

]
1

n2 + n+ 2
<

3

2
·

Consequently, no overflow occurs when computing 2⊗ (x⊗ P̂n−1(x)), and thus

2⊗ (x⊗ P̂n−1(x)) = 2 + (n2 − n+ 2)(x− 1).

From the induction hypothesis for P̂n−2(x), we obtain

2⊗ (x⊗ P̂n−1(x))− P̂n−2(x) =

= 2 + (n2 − n+ 2)(x− 1)−
[
1 +

1

2
(n− 2)(n− 1)(x− 1)

]
= 1 +

[
1

2
n(n+ 1) + 1

]
(x− 1).(3.5)
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From Lemma 2.5 used with N = 1
2 n(n+ 1), we deduce that the number appearing in (3.5) is

representable. Consequently,

2⊗ (x⊗ P̂n−1(x))	 P̂n−2(x) = 1 +

[
1

2
n(n+ 1) + 1

]
(x− 1).(3.6)

If follows from (3.4) and the induction hypothesis for P̂n−2(x) that

x⊗ P̂n−1(x)− P̂n−2(x) =(3.7)

= 1 +

[
1

2
(n− 1)n+ 1

]
(x− 1)−

[
1 +

1

2
(n− 2)(n− 1)(x− 1)

]
(3.8)

= n(x− 1).(3.9)

In view of (3.3), from Lemma 2.1 and Lemma 2.3, respectively, we conclude that the numbers
x− 1 and n(x− 1) are representable. Therefore, (3.7)–(3.9) imply that(

x⊗ P̂n−1(x)	 P̂n−2(x)
)
� n = n(x− 1)� n = x− 1.(3.10)

Substituting (3.6) and (3.10) into (2.3)–(2.4), we obtain

P̂n(x) =

(
1 +

[
1

2
n(n+ 1) + 1

]
(x− 1)

)
	 (x− 1).(3.11)

Applying Lemma 2.5 withN = 1
2 n(n+1)−1, we find that the number 1+ 1

2 n(n+1)(x−1)
is representable. Thus, the right-hand side of (3.11) evaluates to 1 + 1

2 n(n+ 1)(x− 1), and
the induction proof of (3.2) is complete.

In view of symmetry, an analogous result is valid in the neighborhood of x = −1.
THEOREM 3.2. If n > 1 is an integer, u is the unit roundoff, x ∈ F, and

|x+ 1| <
√
u√

n(n+ 1)
,(3.12)

then

P̂n(x) = (−1)n
(
1− 1

2
n(n+ 1)(x+ 1)

)
.(3.13)

4. Properties of Legendre polynomials. We present some properties of Legendre poly-
nomials that are used in Section 5. We denote the mth derivative of the Legendre polynomial
Pn by P (m)

n , m,n = 0, 1, . . . For α, β > −1, we denote the Jacobi polynomial of degree n
by P (α,β)

n [8, 18.5.8]. For z ∈ C, Pochhammer’s symbol is defined as follows [8, 5.2.4]:

(z)n = z(z + 1)(z + 2) · · · (z + n− 1), (z)0 = 1.

In particular, if p and q are non-negative integers, then

(p+ 1)q =
(p+ q)!

p!
·

LEMMA 4.1. If n and m are integers with 0 6 m 6 n, then

P (m)
n = 2−m

(n+m)!

n!
P

(m,m)
n−m ,(4.1) ∣∣∣P (m)

n (z)
∣∣∣ 6 P (m)

n (1) = 2−m
(n+m)!

m!(n−m)!
, −1 6 z 6 1.(4.2)
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Proof. Since Pn = P
(0,0)
n , cf. [8, 18.7.9], (4.1) follows by induction from a differentiation

formula for Jacobi polynomials [8, 18.9.15](
P (α,α)
n

)′
=

1

2
(n+ 2α+ 1)P

(α+1,α+1)
n−1 .

Specifically,(
P (0,0)
n

)(m)

=
1

2
(n+ 1)

(
P

(1,1)
n−1

)(m−1)
= . . . =

1

2m
(n+ 1)(n+ 2) . . . (n+m)P

(m,m)
n−m .

The following inequality, which holds for −1 6 z 6 1, is a special case of [8, 18.14.1]:∣∣∣P (m,m)
n−m (z)

∣∣∣ 6 P
(m,m)
n−m (1) =

(m+ 1)n−m
(n−m)!

=
n!

m!(n−m)!
·

Combining this with (4.1), we obtain (4.2).

For the particular values m = 0, 1, 2, 3, the lemma implies that the following inequalities
are valid for −1 6 z 6 1 and n = 0, 1, . . .

|Pn(z)| 6 Pn(1) = 1,(4.3)

|P ′n(z)| 6 P ′n(1) =
1

2
n(n+ 1),(4.4)

|P ′′n (z)| 6 P ′′n (1) =
1

8
(n− 1)n(n+ 1)(n+ 2),(4.5)

|P ′′′n (z)| 6 P ′′′n (1) =
1

48
(n− 2)(n− 1)n(n+ 1)(n+ 2)(n+ 3).(4.6)

5. Error bounds for the three-term recurrence. In this section, we derive upper and
lower error bounds for the absolute error of P̂n. These estimates are valid in a neighborhood
of the endpoints and rely on Theorem 3.1.

THEOREM 5.1. If n > 1, u is the unit roundoff, n(n+ 1) < 1
u , x ∈ F, and

1−
√
u√

n(n+ 1)
< x 6 1,(5.1)

then

17

36
P ′′n (1) · (1− x)2 6 Pn(x)− P̂n(x) 6

1

2
P ′′n (1) · (1− x)2.(5.2)

The first inequality in (5.2) and its proof have been proposed by the reviewer. A similar
estimate can be deduced from [5, Equation (3)].

Proof. Using (3.2) and the Taylor series of Pn with two terms, we obtain

Pn(x)− P̂n(x) = Pn(x)− [Pn(1) + P ′n(1)(x− 1)]

=
1

2
P ′′n (ξ)(x− 1)2 6

1

2
P ′′n (1)(1− x)2,

where x 6 ξ 6 1, and the last inequality follows from (4.5). Inequality (5.1) yields that

0 6 1− x <
√
u√

n(n+ 1)
<

1

n(n+ 1)
·(5.3)
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Combining (3.2) and the Taylor series of Pn with three terms, we infer that

Pn(x)− P̂n(x) =
1

2
P ′′n (1)(x− 1)2 +

1

6
P ′′′n (ζ)(x− 1)3

>
1

2
P ′′n (1)(1− x)2 −

1

6
P ′′′n (1)(1− x)3,(5.4)

where x 6 ζ 6 1 and the last inequality follows from (4.6). Substituting (4.5), (4.6), and (5.3)
into (5.4), we obtain

Pn(x)− P̂n(x) >
1

2
P ′′n (1)(1− x)2

(
1− (n− 2)(n+ 3)

18n(n+ 1)

)
>

17

36
P ′′n (1)(1− x)2.

The following theorem studies an extremal case of the estimate (5.2).
THEOREM 5.2. Let n > 2 be an integer, u be the unit roundoff, and x be the smallest

representable number such that

x > 1−
√
u√

n(n+ 1)
·(5.5)

If n(n+ 1) < 1
u , then

Pn(x)− P̂n(x) >
un2

68
·(5.6)

Proof. The assumption n(n+ 1) < 1
u implies that

1−
√
u√

n(n+ 1)
< 1− u.(5.7)

Since 1− u is representable, (5.7) implies that x 6 1− u. From (5.5) and the assumptions
u 6 1

2 and n > 2, we deduce that x > 1 − 1√
12

> 1
2 . All representable numbers on the

interval [ 12 , 1] are integer multiples of u. Thus, x = 1− ku for some integer k > 1. From the
definition of x, it follows that

1−
√
u√

n(n+ 1)
> x− u = 1− (k + 1)u.

Consequently,

(k + 1)u >

√
u√

n(n+ 1)

and

1− x =
k

k + 1
· (k + 1)u >

1

2
·

√
u√

n(n+ 1)
·

Substituting this into (5.2) and using (4.5), we obtain

Pn(x)− P̂n(x) >
17

36 · 32
(n− 1)(n+ 2)u >

un2

68
·
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Combining Theorem 5.2 with an upper error bound shown in [6, Theorem 4.1], we deduce
that the absolute error |P̂n − Pn| is maximized within a distance of O( 1

n2 ) from the endpoints
of the interval [−1, 1].

THEOREM 5.3. Let x ∈ F be a point where the maximum of the error
∣∣∣P̂n(x)− Pn(x)∣∣∣

on the interval [−1, 1] occurs. If 2 6 n 6 1
5
√
u

, then

1− |x| 6 7.7 · 107

n2
·(5.8)

Proof. First, since P̂n(1) = Pn(1) = 1 and P̂n(−1) = Pn(−1) = (−1)n, we obtain that
|x| < 1. From Theorem 5.2 and [6, Equation (4.2)], we infer that

un2

68
6 max
y∈F∩[−1,1]

∣∣∣P̂n(y)− Pn(y)∣∣∣ = ∣∣∣P̂n(x)− Pn(x)∣∣∣ 6 129un√
1− x2

·

Consequently,

1− |x| 6 1− x2 6
682 · 1292

n2
6

7.7 · 107

n2
·

We note that [6, Theorem 4.1] requires the restriction n 6 1
5
√
u

, while Theorem 5.2 has the
weaker assumption of n(n+ 1) < 1

u .
Our numerical simulations indicate that the constant in (5.8) is overly pessimistic; see

Section 6.

6. Numerical experiments. We have conducted numerical experiments in order to
validate Theorem 5.1 and to compare the accuracy of the recurrences (2.1)–(2.2) and (2.3)–
(2.4). Our experiments have been performed in GNU Octave, version 4.0.1.

We denote by P̃ sn and P̂ sn the approximate values of the Legendre polynomial Pn computed
in single precision by the recurrences (2.1)–(2.2) and (2.3)–(2.4), respectively. Similarly,
P̃ dn denotes the approximation obtained in double precision using (2.1)–(2.2). For a fixed
degree n > 2, the Legendre polynomial Pn is evaluated at all representable points in the

interval
(
1−

√
u√

n(n+1)
, 1

]
, where u = 2−24 is the unit roundoff in single precision. All

representable points in this interval are integer multiples of u. The errors of the evaluation
in single precision are found by comparing P̃ sn and P̂ sn with P̃ dn . Specifically, the maximum
absolute errors are defined as

ẽn = max
k

∣∣∣P̃ sn(ku)− P̃ dn(ku)∣∣∣ ,
ên = max

k

∣∣∣P̂ sn(ku)− P̃ dn(ku)∣∣∣ ,
where the maximum is taken over all integers k such that 1−

√
u√

n(n+1)
< ku 6 1. Because

of symmetry, one does not need to compute errors at negative arguments.
Figure 6.1 displays the maximum absolute errors of both methods applied to the Legendre

polynomials of degrees n = 2, 4, 8, . . . , 1024. The lower bound un2

68 appearing in (5.6) is
represented by white circles. We observe that both methods have comparable accuracy.

Additionally, we evaluate the Legendre polynomials at all integer multiples of u in the
interval [0, 1]. We observe that the maximum absolute error of P̃n is attained within 0.73

n2 from
the endpoint x = 1, while the maximum absolute error of P̂n is attained within 0.5

n2 from
this endpoint. While not all representable points from the interval [0, 12 ] are included, this
experiment indicates that (5.8) holds with a much smaller constant.
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FIG. 6.1. The maximum absolute errors of P̃n (dashed line) and P̂n (solid line) for n = 2, 4, 8, . . . , 1024.
The lower bound un2

68
appearing in (5.6) is represented by white circles.

7. Conclusions. For a fixed integer n > 0, let Ln(x) := 1 + 1
2n(n+ 1)(x− 1) be the

tangent line to the Legendre polynomial Pn at 1. Since Ln(1) = 1 and L′n(1) =
1
2n(n+1) is

a non-negative integer, it holds that in a sufficiently small neighborhood of 1, the mapping
x 7→ Ln(x) takes F into F. Consequently, Ln(x) is the closest representable number to
Pn(x) if x is sufficiently close to 1. In view of Theorem 3.1, we have P̂n(x) = Ln(x) in a
possibly smaller neighborhood. However, by methods similar to those used in the proof of
Theorem 5.1, one can show that both in single and in double precision, there exists x ∈ F such
that P̂n(x) = Ln(x), while P̂n(x) and Pn(x) are separated by several representable numbers.
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